Focus on Advancing Treatment for Acute Myeloid Leukemia
Bruno Medeiros, MD, and Farhad Ravandi-Kashini, MD

Overview: Bruno Medeiros, MD, and Farhad Ravandi-Kashini, MD, discuss recent advances in the treatment of acute myeloid leukemia (AML) and how new approvals have changed the paradigm for how AML is treated. A central topic in this program is how a better understanding of the molecular genetics of AML has led to new treatments. Dr. Medeiros and Dr. Ravandi-Kashini also discuss the pathology and genetics that support the use of new targeted therapies, and the implications of findings from recent clinical trials.

Content Areas
- Daunorubicin-cytarabine
- Targeted treatment
- FLT3 Tyrosine Kinase Inhibitors
- Isocitrate Dehydrogenase Mutations
- Apoptosis
- CD33 monoclonal antibodies
- Bispecific antibodies

Table of Contents
Abbreviation...3
Focus on Advancing Treatment for Acute........4
Myeloid Leukemia
Genetic and Molecular Changes in AML........4
Daunorubicin-Cytarabine Liposome..............4
(CPX-351)
FLT3 Tyrosine Kinase Inhibitors......................5
Isocitrate Dehydrogenase Mutations as..........6
Treatment Targets
Targeting Apoptosis..7
Target Antigens and Novel Antibodies8
in AML
Conclusion..9
Figures..10

Target Audience
This activity is intended for hematologist-oncologists, oncology nurse practitioners, nurses, physician assistants, and other healthcare providers who treat patients with AML.

Learning Objectives
At the conclusion of this activity, participants should be better able to:
- Apply NCCN practice guidelines, expert recommendations, and/or the outcomes of clinical trials to AML treatment protocols
- Discuss the clinical significance of FLT3, IDH, CD33, and BCL-2
- Associate specific tumor genetic and molecular profiles with treatment mechanisms of action
- Recognize adverse events and potential drug-drug interactions associated with newly-approved treatments

This activity is supported by an independent educational grant from Pfizer, Inc.

Bruno Medeiros, MD
Adjunct Clinical Associate Professor of Medicine
Department of Medicine, Hematology
Stanford Comprehensive Cancer Network
Stanford University
Stanford, California

Farhad Ravandi-Kashini, MD
MD Anderson Center/University of Texas
Department of Leukemia
Division of Cancer Medicine
Houston, Texas

Obtain your CME Credit Online:
http://www.annenberg.net/AML-CME
Accreditation and Certification
The Annenberg Center for Health Sciences at Eisenhower is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians.

The Annenberg Center for Health Sciences at Eisenhower designates this live activity for a maximum of 1.0 AMA PRA Category 1 Credits™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

A maximum of 1.0 contact hours may be earned for successful completion of this activity.

Disclosure Statement
It is the policy of the Annenberg Center for Health Sciences to ensure fair balance, independence, objectivity, and scientific rigor in all programming. All faculty and planners participating in sponsored programs are expected to identify and reference off-label product use and disclose any relationship with those supporting the activity or any others with products or services available within the scope of the topic being discussed in the educational presentation.

The Annenberg Center for Health Sciences assesses conflict of interest with its instructors, planners, managers, and other individuals who are in a position to control the content of CE/CME activities. All relevant conflicts of interest that are identified are thoroughly vetted by the Annenberg Center for fair balance, scientific objectivity of studies utilized in this activity, and patient care recommendations. The Annenberg Center is committed to providing its learners with high-quality CE/CME activities and related materials that promote improvements or quality in health care and not a specific proprietary business interest of a commercial interest.

In accordance with the Accreditation Council for Continuing Medical Education Standards, parallel documents from other accrediting bodies, and Annenberg Center for Health Sciences policy, the following disclosures have been made:

Bruno Medeiros, MD
Research Support: Celgene, Jazz, Novartis, Astellas
Consultant: Celgene, Jazz, Novartis, Astellas

Farhad Ravandi-Kashani, MD
Research Support: Amgen, BMS, Xencor, Orsenix, Macrogenics, AbbVie
Consultant: Celgene, Amgen, Xencor, Orsenix, Astellas, Agios

The faculty for this activity have disclosed that there will be discussion about the use of products for non-FDA approved indications.

The following have no significant relationship to disclose:
Additional content planners
Chris Fischer (medical writer)
Eugene Cullen, MD (peer reviewer)

Annenberg Center for Health Sciences
Staff at the Annenberg Center for Health Sciences at Eisenhower have no relevant commercial relationships to disclose.

The ideas and opinions presented in this educational activity are those of the faculty and do not necessarily reflect the views of the Annenberg Center and/or its agents. As in all educational activities, we encourage practitioners to use their own judgment in treating and addressing the needs of each individual patient, taking into account that patient’s unique clinical situation. The Annenberg Center disclaims all liability and
cannot be held responsible for any problems that may arise from participating in this activity or following treatment recommendations presented.

This activity is an online enduring material. Successful completion is achieved by reading and/or viewing the materials, reflecting on its implications in your practice, and completing the assessment component.

The estimated time to complete the activity is 1.0 hours.

This activity was released on April 20, 2019 and is eligible for credit through April 29, 2020.

This piece is based on a discussion among the faculty members and was written by a writer from the Annenberg Center. Faculty have final editorial control for the piece.

Our Policy on Privacy

Annenberg Center for Health Sciences respects your privacy. We don’t share information you give us, or have the need to share this information in the normal course of providing the services and information you may request. If there should be a need or request to share this information, we will do so only with your explicit permission. See Privacy Statement and other information at http://www.annenberg.net/privacy-policy/

Contact Information

For help or questions about this activity please contact Continuing Education: ce@annenberg.net

Abbreviations

AML, acute myeloid leukemia
BiTE, bispecific T-cell-engaging
CI, confidence interval
CRc, composite complete remission (includes CR, CRi, and CRp)
CRh, CR with partial hematologic recovery
CRi, CR with incomplete hematologic recovery
CRp, CR with incomplete platelet counts
DART, dual-affinity retargeting
DFS, disease-free survival
EFS, event-free survival
ELN, European LeukemiaNet
GO, gemtuzumab ozogamicin
HR, hazard ratio
HSCT, hematopoietic stem cell transplant
MDS, myelodysplastic syndrome
OR, odds ratio
OS, overall survival
RFS, relapse-free survival
R/R AML, relapsed or refractory AML
Focus on Advancing Treatment for Acute Myeloid Leukemia

Standard chemotherapy for acute myeloid leukemia (AML) has remained essentially unchanged for the past 3 decades, but since 2017, the FDA has approved 7 new treatments. In addition to a change in the standard daunorubicin/cytarabine regimen, an understanding of the biology of AML has led to the introduction of new targeted treatments, and a new standard of care.

Genetic and Molecular Changes in AML

Cytogenetics and mutational analysis have been important in defining hematopoietic disorders, and are becoming an increasingly powerful prognostic tool and for guiding clinical decision making.1,2 In addition to cytogenetic analysis, mutational analyses for NPM1, FLT3, CEBPA, IDH1 and IDH2, DNMT3a, and KIT mutations can help define patient prognosis, and in the cases of FLT3 and IDH1, can guide treatment. The European LeukemiaNet (ELN) has proposed a 3-group classification system for genetic risk that uses cytogenetic features, mutational analyses, and interactions between lesions, to define patients with a favorable, adverse, or intermediate prognosis (see Figure 1).

Daunorubicin-Cytarabine Liposome (CPX-351)

Daunorubicin-cytarabine liposome (CPX-351) is a 1:5 molar ratio of daunorubicin to cytarabine.3 Liposomal encapsulation improves the half-life of daunorubicin-cytarabine, and also maintains the synergistic 1:5 ratio. In preclinical studies, this daunorubicin-cytarabine ratio had the greatest cytotoxic effect, and encapsulation in liposomes maintains this ratio. Consequently, CPX-351 has a greater antineoplastic effect than coadministration of unencapsulated chemotherapy.4,5 Preclinical studies also suggest that CPX-351 is preferentially taken up in the bone marrow and by leukemic cells.6

Pharmacokinetic studies in humans showed that the daunorubicin-cytarabine ratio was maintained in plasma and bone marrow for at least 24 hours.6 CPX-351 was tested in a randomized, open-label, parallel-arm trial of treatment-naive patients between 60-75 years old (N=309). Patients had to be able to tolerate intensive chemotherapy, and had a performance status of 0-2.3 Randomization was either to treatment with CPX-351 (n=153) or standard 7+3 chemotherapy (n=156); both arms received 1-2 cycles of induction therapy, followed by 1-2 cycles of consolidation for patients in CR or CRi. Patients were followed for 5 years or until death. CPX-351 was superior to conventional 7+3 chemotherapy on several measures, and the benefit for CPX-351 treatment was independent of patient age and AML subtype. Overall survival was 9.56 months (CI 6.60-11.86) for patients receiving CPX-351, compared to 5.95 months (CI 4.99-7.75, P=0.005) in the 7+3 arm, and more patients responded to CPX-351 (37%, compared to 26%, had complete responses, P=0.04). Other endpoints were improved in the CPX-351 group, including all-cause mortality at 30 and 60 days, the number of patients going on to receive hematopoietic stem cell transplant (HSCT), and median survival after HSCT (not reached in CPX-351 group, vs 10.25 months for 7+3).

In a separate analysis of the phase 3 data, Kolitz and colleagues presented data suggesting that CPX-351 could be administered in the outpatient setting without a loss of efficacy.7 Median survival for patients who received their first course of consolidation therapy as inpatients
(n=24/49) had a median OS of 14.7 months, and this was similar to the OS in those who were treated as outpatients (n=25/49, 25.4 months). While median OS had not been reached in patients who received CPX-351 as inpatients during the second consolidation cycle, median survival was 26.3 months in outpatients. Based on these studies, CPX-351 has become the new standard of care in patients with therapy-related AML and AML with myelodysplasia-related changes. To date, it remains unclear whether CPX-351 will provide the same level of benefit in patients under 60 years of age.

FLT3 Tyrosine Kinase Inhibitors

The FMS-like tyrosine kinase 3 (FLT3) receptor has a role in the survival, proliferation, and differentiation of hematopoietic stem cells, and is overexpressed in >70% of AML cases.\(^8-10\) Mutations in FLT3 constitutively activate the FLT3 pathway, driving the survival and proliferation of leukemic cells. The most common mutation is an internal tandem duplication (FLT-ITD) of the juxtamembrane domain; up to 30% of patients with AML have the FLT3-ITD mutation, and FLT3-ITD is associated with shorter remissions and overall survival.\(^1,2,10,11\) Mutations to the tyrosine kinase domain also occur (FLT3-TKD), but are less common (10% or less of cases) and are not as clearly linked to prognosis.\(^1,10\) The prognostic effect of mutations to the FLT3 gene is modified by other, nonlinked loci, the presence of a wild-type FLT3 allele, and the ratio of FLT3-ITD to FLT3 wild-type expression (see Figure 2).

Small-molecule tyrosine kinase inhibitors that bind FLT3 and competitively inhibit protein phosphorylation have been identified.\(^10\) These inhibitors differ in their specificity for FLT3 vs other tyrosine kinases (eg, c-Kit and VEGF) and mechanisms of action. Midostaurin and gilteritinib bind to the active conformation of FLT3 in the gatekeeper domain (type I inhibitors), while sorafenib, ponatinib, and quizartinib bind the inactive conformation near the ATP-binding domain (type II inhibitors). These differing mechanisms are clinically significant since mutations in the gatekeeper or ATP-binding domains affect the effectiveness of the inhibitor, or can lead to resistance. In general, type I inhibitors are effective against ITD and TKD mutants, while type II inhibitors only target FLT3-TKD mutants.

Midostaurin is a FLT3-protein kinase C inhibitor that had activity as a single agent in FLT3-mutant AML.\(^10\) However, the real value of midostaurin was demonstrated in a phase 3 trial of treatment-naïve patients, under 60 years of age, who received conventional daunorubicin-cytarabine induction chemotherapy, with or without midostaurin (50 mg twice daily for days 8-22).\(^12\) Patients went on to receive 4 cycles of cytarabine consolidation treatment and 12 cycles of maintenance therapy with midostaurin or placebo. Those treated with midostaurin had a significant improvement in OS compared to patients who only received placebo (75 months vs 26 months, respectively). This benefit was independent of the type of FLT3 mutation—OS was similar in patients with FLT3-ITD and FLT3-TKD mutations. In a post-hoc analysis, NPM mutation status may have had an effect, however, with midostaurin having the most pronounced effect on OS and event-free survival (EFS) in patients who had NPM-wild-type/FLT3-ITD\(^{\text{high}}\) AML.\(^13\) In these patients, midostaurin improved the OS over placebo from 14 to 26 months (\(P=0.025\)) and EFS from 3 to 8 months (\(P=0.016\)). Results after 5 years of follow-up also
indicated significant benefits for midostaurin, with improvements in 5-year OS and EFS. The incidence of grade ≥3 adverse events was similar between the groups.

While midostaurin is a multikinase inhibitor, gilteritinib has activity preferentially against wild-type FLT3, FLT3-ITD, and several FLT3 mutants (FLT3-D835, a common source of resistance, and the gatekeeper F691L mutation). Gilteritinib also has some activity against the Axl kinase, but not c-Kit, which is important for normal hematopoiesis. A phase 1/2 trial showed that 49% of patients with a FLT3 mutation had a CR to gilteritinib, but only 12% with FLT3wild-type responded. Responses were still seen in patients who were treatment naive (CRc=44%) or who had failed previous FLT3 inhibitor treatment (CRc=31%). Gilteritinib was approved in November 2018 based on an interim analysis of the ADMIRAL trial. Patients (N=138) with relapsed or refractory AML and a FLT3-ITD, FLT3-D835, or FLT3-1836 mutation were treated with 120 mg gilteritinib daily. After a median follow-up of 4.6 months, 21% of patients had a CR or CRh (21%, 95% CI: 14.5, 28.8). For patients relapsed or refractory AML (R/R AML) with a FLT3 mutation, gilteritinib may be an option.

Results for a phase 3 study of quizartinib monotherapy were recently presented, leading to FDA submission of a new drug application. In the QuANUTM study, patients with FLT3-ITD AML that was refractory to treatment, or who had relapsed within 6 months of remission after initial treatment, were randomized to treatment with quizartinib (60 mg/day) or conventional salvage chemotherapy. The CRc was 48% for patients who received quizartinib (compared to 30% for standard chemotherapy), and the overall response rate was 69% (compared to 30% with chemotherapy). Quizartinib met the primary endpoint of improved OS, with quizartinib-treated patients surviving a median of 6.2 months, vs 4.7 months in the chemotherapy group (HR=0.76, P=0.02). The benefit was independent of subsequent transplant, the use of another FLT3 inhibitor, and protocol deviations. Patients who had prior allogeneic HSCT also had a better overall survival with quizartinib, and the benefit was independent of karyotype risk category.

In patients with untreated, FLT3-mutant AML, FLT3 inhibitors are the standard of care given the improvement in outcomes when combined with chemotherapy, or when used as a monotherapy in patients with relapsed and refractory AML. Ongoing clinical trials will clarify whether adding the next generation of more potent and specific FLT3 inhibitors to chemotherapy will lead to better outcomes.

Isocitrate Dehydrogenase Mutations as Treatment Targets
The isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) enzymes are components of the citric acid cycle (aka, tricarboxylic acid or Krebs cycle); in addition to its metabolic role, α-ketoglutarate (the product of isocitrate oxidative decarboxylation by IDH1 and IDH2) has a role in cell-cycle regulation and gene expression though its effect on DNA methylation. Mutant forms of IDH enzymes also produce the oncometabolite, (R)-2-hydroxyglutarate, which appears to promote cell proliferation and block differentiation in hematopoietic cells. Mutations in the IDH genes rarely occur together, and are usually found in patients without FLT3 abnormalities. The prognostic value for either IDH mutation is not clear.

Enasidenib was approved in 2017 for patients with an IDH2 mutation, and in July 2018, the IDH1 inhibitor ivosidenib was approved. The approval for enasidenib was based on an open-label, single-arm trial of patients with an IDH2 mutation; most patients had R/R AML (n=159),
but the trial also included treatment-naïve patients (n=24) and patients with MDS (n=14).21 In this trial, enasidenib led to a response in 37% of patients with relapsed or refractory disease, including 18% who had a CR. The median OS in this group was 9.3 months, with 39% surviving to 1 year after a median follow-up of 7.7 months. The response rates for patients with R140Q and R172K mutations were similar (OR 36% and 42%, respectively), even though mutations at these positions may have disparate prognoses.22

Ivosidenib was tested in a phase 1, open-label, dose-escalation trial of patients with an IDH1 mutation, most of whom had had at least 2 relapses, had relapsed after stem-cell transplant, were refractory after induction or reinduction, or had relapsed within 1 year.23 The trial was conducted in 2 stages: the dose escalation phase included 78 patients, while the dose expansion phase enrolled 180 patients who were treated with 500 mg ivosidenib once daily on a continuous 28-day cycle. The CR/CRh rate for this study was 30%, with 22% of patients having a CR; CR occurred after a median of 2.7 months (range 0.9-5.6). Patients with a CR/CRh had a median response duration of 11.1 months, with 50.1% surviving to 18 months.

Both IDH inhibitors are associated with significant clinical benefit in patients with R/R AML, and ongoing clinical trials will determine whether there will be an improvement for patients with IDH1 or IDH2 mutations when combined with induction chemotherapy and/or hypomethylating agents.

Targeting Apoptosis

The BCL2 protein inhibits apoptosis (programmed cell death), and overexpression of BCL2 in AML has been associated with poor survival and chemotherapy resistance.24 Venetoclax inhibits the antiapoptotic activity of BCL2 by disrupting its sequestration of proapoptotic proteins (eg, the BH3-only proteins, BIM and BAX), leading to p53-independent apoptosis.25,26 The patients enrolled in the 2 open-label trials leading to the approval of venetoclax had newly-diagnosed AML (ie, were treatment naïve), were generally older (median age >74 years old), and were not otherwise eligible for intensive chemotherapy.27,28 In the first study, patients (N=145) received decitabine or azacitidine with venetoclax 400 mg or 800 mg after a 3-day ramp-up phase (5 patients also received venetoclax 1200 mg). In the overall study population, 66% of patients achieved a CR/CRi with a median duration of 11.3 months after 15.1 months of follow-up. Median OS was 17.5 months, and no cases of tumor lysis syndrome were observed. Patients in the second study (N=61) reached a target dose of 600 mg after a 5-day ramp-up phase, and were also treated with cytarabine. The CR/CRi rate was (62%), and median duration of response was 13.2 months. OS was 11.4 months, with 45% of patients surviving 12 months, and was highly correlated with response: all patients who had a CR survived at least 12 months, compared to 49% for patients with a CRi and 5% for patients without a response. The authors also compared responses among several patient subsets. In general, responses were better in patients with intermediate genotypic features or without a history of hypomethylating treatment for an antecedent hematologic disorder, compared to patients with adverse genotypic features or with prior hypomethylating agent treatment. Patients in the intermediate risk category (n=37) had a response rate of 76%, compared to those in the adverse risk category (47%, n=19), and patients who had been treated with a hypomethylating agent had a CR/CRi of 53% (n=17) vs 66% (n=44) in those who had not; this was similar to the response rate in the 27 patients who had secondary AML (CR/CRi=52%). These findings are being confirmed in 2 ongoing, placebo-controlled, phase 3 trials of treatment-naïve patients who will receive venetoclax in
combination with azacitidine (NCT02993523) or low-dose cytarabine (NCT03069352).

For older patients who are unable to undergo induction chemotherapy, the combination of venetoclax plus a hypomethylating agent or low-dose cytarabine provides significant clinical benefit. These combinations are being tested and will clarify whether they should be the standard of care for previously untreated patients with AML who cannot tolerate induction chemotherapy.

Target Antigens and Novel Antibodies in AML

Tumor-associated antigens are one mechanism for targeting treatment to tumor cells. CD33 is a cell-surface receptor expressed primarily in the myeloid lineage, and, because of its nearly ubiquitous presence in patient AML samples, has become a target for antibody-mediated treatments.\(^{29}\) One means of antibody-directed treatment is by using a monoclonal antibody to deliver a cytotoxic agent to tumor cells. Gemtuzumab ozogamicin (GO) is one example where this mechanism has been successfully applied. On binding to a tumor cell via the CD33 receptor, GO is internalized into the lysosome where calicheamicin is hydrolyzed and released into the cell.\(^{30}\) GO was initially approved in 2000 for patients with CD33-positive AML who were not eligible for chemotherapy, but was withdrawn in 2010 when a confirmatory trial did not demonstrate an improvement in overall survival and raised the concern of treatment-related early mortality.\(^{30,31}\)

The phase 3 ALFA-0701 was initiated after the withdrawal of GO to reevaluate its potential benefits.\(^{32}\) Patients in this trial (N=278) were 50-70 years of age with de novo, treatment-naïve AML, and were randomized to standard treatment with daunorubicin/cytarabine, with or without GO 3 mg/m\(^2\) on days 1, 4, and 7 during induction, and on day 1 during consolidation therapy. EFS was the primary endpoint. Treatment-related mortality was similar between the GO and control groups (n=6 without GO, vs 9 in the GO group, \(P=0.41\)), as was the CR/CRI (74%-81%, \(P=0.25\)). GO, however, had a significant benefit on both EFS and relapse-free survival (RFS): patients who were treated with GO had an estimated 3-year EFS of 31%, compared to 19% in the control group (\(P<0.05\)), and a 3-year RFS of 38%, compared to 25% in the control group (\(P<0.05\)). There was no significant difference in 3-year OS.

Hills et al also conducted a meta-analysis of individual patient data from 5 randomized trials of GO, including data from 3325 patients. Again, this meta-analysis showed that there was no difference in CR/CRI with GO treatment. Patients treated with GO, however, had a lower risk of relapse (OR 0.91, 0.73-0.90; \(P=0.0001\)) and improved 5-year survival (OR 0.90, 0.82-0.98; \(P=0.01\)). As part of this study, the authors also compared patients based on their cytogenetic risk.\(^{31}\) GO led to a 20.7% difference in OS at 6 years in patients with a favorable cytogenetic profile (compared to patients who were only treated with standard therapy, \(P=0.006\)), with a 6-year survival of 77.5% in patients who received GO (compared to 54.8% in patients in the control group). A smaller, but still significant, difference of 5.7% was seen in patients with an intermediate cytogenetic profile (6-year survival=39.6% in the GO group, 33.9% in the control group; \(P=0.005\)). Patients with an adverse cytogenetic profile did not benefit from the addition of GO (6-year survival=2.2%). Finally, the authors found that doses of 3 mg/m\(^2\) were associated with a lower risk of early death than 6 mg/m\(^2\), and that the higher dose did not confer an advantage.

These studies led to the approval of GO for adults with newly-diagnosed, CD33-positive, and for patients with CD33-positive R/R AML in September 2017. The addition of GO to conventional induction chemotherapy improves
survival for AML patients with favorable- and intermediate-risk cytogenetics, but does not improve the outcomes for patients with an adverse-risk karyotype.

An alternative to monoclonal antibodies is a bispecific antibody that recruits an immune effector cell to a tumor cell via a tumor antigen, leading to the cell-mediated killing of the targeted cell. Bispecific T-cell-engaging (BiTE) antibodies are one example of this method, and dual-affinity retargeting (DART) antibodies are another variation, both of which are being tested in AML. One advantage of these methods is that, compared to antibodies that deliver a chemotherapeutic, fewer bispecific antibodies are needed to effect cell death—an important consideration when the target antigen is expressed at low levels. AMG-330 is a bispecific antibody that binds the CD33 tumor cell antigen, and then recruits a T-cell via the CD3 receptor. In a phase 1 dose escalation trial, patients (N=35) with R/R AML were treated with AMG-330, and 4 patients attained a CR/CRi at doses between 120-240 µg/day. XmAB14045 utilizes a similar approach, but targets the CD123 antigen or interleukin-3 receptor (IL-3R). Expression of IL-3R is highest on B lymphoid and myeloid progenitors, and it is either not present or expressed at low levels on other hematopoietic precursor cells; CD123 expression has also been associated with poor prognosis. As of February 2019, the phase 1 trial of XmAb14045 is on clinical hold and not enrolling additional patients, pending a review of 2 patient deaths possibly related to treatment. Flotetuzumab utilizes the same target but is based on the DART platform rather than the immunoglobulin scaffold of BiTEs. This compound is currently undergoing phase 1 testing.

Conclusion

The recent approvals have improved overall outcomes for several subsets of AML patients, but we still have the challenge of treating patients who do not have a targetable genotype or karyotype. The risk of resistance and managing patients who develop resistance are other areas that will be of increasing concern as well.
2017 ELN Risk Stratification by Genetics

<table>
<thead>
<tr>
<th>Risk Category*</th>
<th>Genetic Abnormality</th>
<th>Mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Favorable</td>
<td>Chromosomal rearrangements t(8;21)(q22;q22.2), RUNX1-RUNX1IT1</td>
<td>Mutated NPM1 without FIT3-ITD or with FIT3-ITD<sup>high</sup> Biologic mutated CBFB-MYH11</td>
</tr>
<tr>
<td></td>
<td>inv(16)(p13.1;q22) or t(16;16)(p13.1;q22), CBFB-MYH11</td>
<td></td>
</tr>
<tr>
<td>Intermediate</td>
<td>Chromosomal rearrangements t(9;11)(p21.3;q23.3), MLLT3-KMT2A<sup>*</sup></td>
<td>Mutated NPM1 and FIT3-ITD<sup>low</sup> Wild-type AML without FIT3-ITD or with FIT3-ITD<sup>low</sup> (without adverse-risk genetic lesions)</td>
</tr>
<tr>
<td></td>
<td>Cyogenetic abnormalities not classified as favorable or adverse</td>
<td></td>
</tr>
<tr>
<td>Adverse</td>
<td>Chromosomal rearrangements t(6;9)(p23;q14.1), DEK-NUP214(t;11q23.3), KMT2A rearranged t(9;22)(q34.1;q11.2), BCR-ABL1</td>
<td>Mutations</td>
</tr>
<tr>
<td></td>
<td>inv(15)(q15.1-q26.2) or t(15;15)(q21.1;q26.2), GAP21, MECOM(EVI1) -5 or del(15)(q5), -7, -7del(17)(p13)</td>
<td>Wild-type NPM1 and FIT3-ITD<sup>low</sup> Wild-type RUNX1<sup>high</sup> Wild-type ASXL1 Mutated T(15)E2*</td>
</tr>
<tr>
<td></td>
<td>Complex karyotype, 3 monosomal karyotype</td>
<td></td>
</tr>
</tbody>
</table>

Diagnostic impact of a marker is treatment-dependent and may change with new therapies. Low, low blast ratio (L,B); high, high blast ratio (H,B); semiquantitative assessment of FIT3-ITD status: <itype experiments are included in the ELN. The presence of t(11q23.3), BCR-ABL1 takes precedence over cases, concurrent adverse-risk gene mutations. The presence of t(9;22)(q34.1;q11.2) takes precedence over cases, concurrent adverse-risk gene mutations. The presence of 1 or more associated chromosome abnormalities is the presence of 1 or more associated adverse-risk gene mutations. The presence of t(11q23.3), BCR-ABL1 takes precedence over cases, concurrent adverse-risk gene mutations.
References

33. Ravandi F, Stein AS, Kantarjian H, Walter RB, Subklewe M. A phase 1 first-in-human study of AMG 330, an anti-CD33 bispecific T-cell engager (BiTE®) antibody construct, in

